Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M Mahendra, ${ }^{\text {a }}$ S. A. Khanum, ${ }^{\text {b }}$
A. Singh, ${ }^{\text {b }}$ S. Shashikanth, ${ }^{\text {b }}$
B. H. Doreswamy, ${ }^{\text {a }}$
M. A. Sridhar ${ }^{\mathrm{a}}$ and
J. Shashidhara Prasad ${ }^{\text {a * }}$
${ }^{\text {a }}$ Department of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India, and ${ }^{\text {b }}$ Department of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail:
mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.143$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(4-Methoxyphenyl)(2-methylphenyl)methanone

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$, the dihedral angle between the two benzene rings is $56.34(7)^{\circ}$.

Received 8 August 2005 Accepted 15 August 2005 Online 20 August 2005

Comment

Benzophenones play an important role in imparting antiinflammatory (Khanum,Shashikanth et al., 2004; Khanum, Venu et al., 2004), anti-anaphylactic (Evans et al., 1987), antimalarial (Wiesner et al., 2001) and anticancer (Hsieh et al., 2003) activities. The presence of different substituents on the benzophenone nucleus is crucial in determining the quantitative structure-activity relationships. Owing to the importance of various substituents on the nucleus, the title compound, (I), was synthesized and its crystal structure is reported here.

The molecule of (I) is non-planar (Fig. 1). The dihedral angle between the two benzene rings is $56.37(3)^{\circ}$; this value is much smaller than the corresponding value of 75.2° observed in 3,4-dimethoxyphenyl(2-chlorophenyl)methanone [(II); Mahendra et al., 2003]. Bond lengths and angles have normal values and are comparable with those reported for (II). The crystal packing is stabilized by intermolecular C15$\mathrm{H} 15 A \cdots \mathrm{O} 16^{\mathrm{i}}$ (symmetry code as in Table 2) hydrogen bonds, which link the molecules into chains (Fig. 2).

A detailed study of the biological activity of (I) is underway.

Figure 1
View of (I), with 50% probability displacement ellipsoids.

Experimental

To a mixture of anhydrous aluminium chloride（ $22 \mathrm{~g}, 9.2 \mathrm{mmol}$ ）in dry carbon disulfide（ 15 ml ），4－methoxy benzene（ $1 \mathrm{~g}, 9.2 \mathrm{mmol}$ ）and 3－ methylbenzoic acid（ $1.25 \mathrm{~g}, 9.2 \mathrm{mmol}$ ）were added．The reaction mixture was protected from moisture by a calcium chloride guard tube and stirrred for 30 min ．At the end of this period，the solution was cooled and decomposed by acidified ice－cold water．The carbon disulfide was removed by distillation．The residual solid was crushed into a powder，extracted with diethyl ether（ 60 ml ），and the ether layer was washed well with 10% sodium hydroxide solution（ 60 ml ）， followed by distilled water．Evaporation of the diethyl ether after drying over anhydrous sodium sulfate followed by recrystallization from ethyl alcohol gave the title compound（yield 85% ；m．p． 329 K ）．

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
$M_{r}=226.26$
Monoclinic，$P 2_{1} / c$
$a=7.592$（4）\AA 。
$b=14.147$（7）\AA
$c=11.342$（7）\AA
$\beta=95.231(2)^{\circ}$
$V=1213.1(12) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.239 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4020 \\
& \quad \text { reflections } \\
& \theta=2.3-25.0^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.3 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

MacScience DIPLabo 32001
diffractometer
ω scans
Absorption correction：none
4020 measured reflections
2123 independent reflections
1882 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.143$
$S=1.19$
2123 reflections
157 parameters
H－atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0795 P)^{2}\right. \\
& +0.1331 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.22 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters（ $\AA \mathrm{A}^{\circ}$ ）．

$\mathrm{O} 17-\mathrm{C} 1$	$1.3593(17)$	$\mathrm{C} 8-\mathrm{O} 16$	$1.2192(18)$
$\mathrm{O} 17-\mathrm{C} 7$	$1.421(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.496(2)$
$\mathrm{C} 4-\mathrm{C} 8$	$1.486(2)$		
$\mathrm{C} 1-\mathrm{O} 17-\mathrm{C} 7$	$118.38(12)$	$\mathrm{O} 17-\mathrm{C} 1-\mathrm{C} 2$	$115.50(12)$
$\mathrm{O} 17-\mathrm{C} 1-\mathrm{C} 6$	$124.86(13)$		

Table 2
Hydrogen－bond geometry（ $\AA^{\circ}{ }^{\circ}$ ）．

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O} 16^{\mathrm{i}}$	0.96	2.57	$3.517(3)$	169
Symmetry code：（i）$x,-y+\frac{3}{2},+z-\frac{1}{2}$.				

H atoms were placed at idealized positions and allowed to ride on their parent atoms，with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})$ values set equal to $x U_{\text {eq }}$（carrier atom），where $x=1.5$ for methyl H atoms and

Figure 2
The packing of（I），viewed down the b axis．Dashed lines indicate hydrogen bonds．
1.2 for other H atoms．A rotating group refinement was used for the methyl groups．

Data collection：XPRESS（MacScience，2002）；cell refinement： SCALEPACK（Otwinowski \＆Minor，1997）；data reduction： DENZO（Otwinowski and Minor，1997）and SCALEPACK； program（s）used to solve structure：SHELXS97（Sheldrick，1990）； program（s）used to refine structure：SHELXL97（Sheldrick，1997）； molecular graphics：PLATON（Spek，2003）and ORTEPII（Johnson， 1976）；software used to prepare material for publication： SHELXL97．

We thank the DST，Government of India，for financial assistance under project No．SP／I2／FOO／93．MM thanks the CSIR，Government of India，for the award of a Senior Research Fellowship．

References

Evans，D．，Cracknell，M．E．，Saunders，J．C．，Smith，C．E．，Willamson，W．R．N．， Dowson，W．\＆Sweatman，W．J．F．（1987）．J．Med．Chem．30，1321－1327．
Hsieh，H．P．，Liou，J．P．，Lin，Y．T．，Mahindroo，M．，Chang，J．Y．，Yang，Y．N．， Chern，S．S．，Tan，U．K．，Chang，C．W．，Chen，T．W．，Lin，C．H．，Chang，Y．Y．\＆ Wang，C．C．（2003）．Bioorg．Med．Chem．Lett．13，101－105．
Johnson，C．K．（1976）．ORTEPII．Report ORNL－5138．Oak Ridge National Laboratory，Tennessee，USA．
Khanum，S．A．，Shashikanth，S．\＆Deepak，A．V．（2004）．Bioorg．Chem．32， 211－222．
Khanum，S．A．，Venu，T．D．，Shashikanth，S．\＆Firdouse，A．（2004）．Bioorg． Med．Chem．Lett．14，5351－5355．
MacScience（2002）．XPRESS．MacScience Co．Ltd，Yokohama，Japan．
Mahendra，M．，Doreswamy，B．H．，Sudha，B．S．，Khanum，S．A．，Shashikanth， S．，Sridhar，M．A．\＆Prasad，J．S．（2003）．Anal．Sci．19，x57－x58．
Otwinowski，Z．\＆Minor，W．（1997）．Methods in Enzymology，Vol．276， Macromolecular Crystallography，Part A，edited by C．W．Carter Jr．\＆R．M． Sweet，pp．307－326．New York：Academic Press．
Sheldrick，G．M．（1990）．Acta Cryst．A46，467－473．
Sheldrick，G．M．（1997）．SHELXL97．University of Göttingen，Germany．
Spek，A．L．（2003）．J．Appl．Cryst．36，7－13．
Wiesner，J．，Mitsch，A．，Wibner，P．，Jomaa，H．\＆Schlitzer，M．（2001）．Bioorg． Med．Chem．Lett．11，423－424．

